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Molecular dynamics study of the stability of the hard sphere glass
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Glassy states have been observed in hard-spherelike colloidal suspensions; however, some recent work
suggests that a stable, one-component hard-sphere glass doesn'’t exist. A possible resolution of this dilemma is
that colloidal glass formation results from a small degree of particle polydispersity. In order to investigate this
further, we used the molecular-dynamics method to explore the phase behavior of both one- and two-
component hard-sphere systems. It was found that the metastable fluid branch of the one-component system
ceased to exist at a volume fraction marginally above melting, instead this system always crystallized within a
relatively short period of time. Binary systems with a size rafie 0.9 were then used as the simplest
approximation to model a polydisperse hard-sphere colloidal system. Here the crystallization process was
slowed down dramatically for all volume fractions and the fluid state was maintained for many relaxation
times. Indeed, at the lowest volume fractign- 0.55 no sign of crystallization was seen on the simulation time
scale. The systems at intermediate volume fractions did eventually crystallize but at the highest volume
fraction of ¢=0.58, a dramatic slowing down in the crystallization process was observed. This is qualitatively
in agreement with the experimental results on colloidal suspensions. Using the insight gained from this paper,
the reasons behind a polydisperse system forming a stable glass, in contrast to the one-component system, are

elucidated.
DOI: 10.1103/PhysReVvE.64.021506 PACS nunier64.70.Pf
[. INTRODUCTION Here we have made a theoretical study of hard-sphere

systems using the molecular-dynami{t4D) method to pro-

One of the most interesting results from the pioneeringvide some insight into the occurrence and suppression of
computer simulation studies of Alder and Wainwrightand  crystallization. Simulations of one-component systems are
of Wood and Park€i2] was that a system of purely repulsive used to confirm that deeply quenched fluids are indeed un-
hard spheres in periodic boundary conditions can exist istable and crystallize rapidly. We have studied this over a
both a fluidlike state and a crystalline stdtBese states be- larger range of volume fractions and for a longer duration of
ing linked by first-order phase transitiprBubsequent simu- time than has been done in previous work.
lation studies indicated that the hard-sphere system may also Although simulating the crystallization of a one-
form a long-lived glassy state. In order to explore the quescomponent hard-sphere system is now a relatively easy task,
tion of hard-sphere glass formation, Woodcdd intro-  extending such studies to a model of a truly polydisperse
duced schemes for compressing the equilibrium hard-spheig;stem is quite difficult due to the added complexity in cal-
fluid to a supercooled fluid state. His results seemed to indicylating the precise and relevant phase behavior. Hence we
cate the existence of a glassy state for the one-componeRhve carried out hard-sphere MD simulations using a binary
hard-sphere system. More recently Pusey and van Meflen system with a size ratigy=0.905 to investigate the problem
determined that a hard-spherelike colloidal suspension ngis j first step towards modeling a truly polydisperse system
only exhibited an equilibrium fluid and solid phase, but atyith a small value of. While it might be thought that such
high densities a long-lived glassy phase was also observegpinary system is somewhat different from a typical colloi-
after shear melting. Despite the small amount of polydisperya| dispersion of narrow size distribution, we found that the
sity, (defined as the standard deviation of the particle sizgrystallization process is significantly retarded, relative to the
distribution divided by the mean sizs), of arounds=0.05,  one-component system, and that behavior is seen which
the observed equilibrium phase behavior could be accuratebimics that observed in such colloidal systems. More impor-
mapped to that predicted for a one-component hard-sphekgntly the reasons for the crystallization processes being sup-
system by computer simulatigb]. This observation is con- pressed in the binary system are shown here to be both
sistent with more recent computational wgf{ where only  readily understandable and to be relevant to understanding

subtle changes in the experimentally observable propertiehe behavior of the polydisperse system.
(Pusey and van Megerare predicted for the equilibrium

phase behavior of a system with this amount of polydisper-
sity, compared to a monodisperse system.

Despite the results of this early work there is increasing
evidence from computer-simulation studies that monodis- Molecular-dynamics simulations of one- and two-
perse hard-sphere systems do not form a stable glassy phasemponent hard-sphere systems were performed in periodic
[7,8]. However the mechanisms responsible for this differ-boundary conditions in which the total number of particles
ence in behavior between monodisperse and polydispersé¢ the system’s volum&/, and the internal energy were
hard-sphere systems are yet to be elucidated. held fixed, i.e., we used a microcanonical ensemble. The

II. SIMULATION DETAILS
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hard-sphere system has no potential energy; thus if the intedifficult to unambiguously classify and analyze the structure
nal energy is held fixed, the temperatdravill also be held of systems having only local order, such as nucleating fluids.
fixed, and the microcanonical ensemble is equivalent to th&oronoi analysis has been extensively used to study amor-
canonical ensemble. The computational procedures are staphous materials, crystalline materiglg0,11], and to follow
dard and extensively documentg. All length scales inthe the process of crystallizatiori2—15. The Voronoi method
simulations are expressed in termsoqf, the diameter of the  decomposes space into a set of polyhedra associated with
particles of species one, and the binary systems have a siggch particle. The polyhedron for each particle is defined as
ratio y=o,/0,=0.905. Rather than the number density  the region of space closer to that particle than it is to any
the volume fraction will be used to define particle concen- other particle in the material. Often the shape of these
tration, which is defined as the total volume of all the par-ygronoj cells are used directly to measure the local environ-
ticles in the simulation divided by the volume of the simula- ment of each particle and to infer something about the degree

tion box. For the one-component system we have of crystalline order present. However there are some prob-
3 3 lems involving degeneracies of the faces of these polyhedra

= mNo _T (1) [16]. In fact distortions of the shape of the Voronoi polyne-

6v 6 dra by such effects as thermal motion makes it difficult to

. measure the fcc and hcp local environments in nucleating

and for the binary system we have systems. Thus in the traditional Voronoi methdd®,11] fcc

3 3 3 and hcp environments are unstable with respect to thermal
_ N1+ No03) 7oy &Jr &i) (2 distortions. Methods have been suggested to improve this

6V 6 AN NP analysis, which are not entirely without problems. Thus we

have developed a new method to identify the local fcc or hcp
To a first approximation this allows one to directly comparegnvironments in a nucleating systgas).

the binary system to a corresponding one-component system another method used to analyze systems, which are lack-
as, in contrast to the number density, the volume fractionng in long-range order, is ring statistics. Here a measure of
allows the construction of a phase diagram that is invarianghe connectivity of the atoms in the system is sought. Many
to the particle diametes. The volume fractions of freezing gefinitions of these rings are possible, however Franzblau
and melting for one-component hard spheres are 0.494 and7] showed that it is possible to define a set of rings by a
0.545, respectively5]. The binary systems used were suchshortest-path criterion, which is probably the most natural
that both species had the same mass=m,=m, and were  and consistent way of performing a ring analysis. The result-
equimolar,N; =N,=N/2. All times were measured in units ant measure of local structure is shown to agree well with
of o;ym/KT, as such a particle of species one undergoingntuitive ideas about short-to medium-range structure, and in

ballistic dynamics will, on root-mean-square average, traveh hierarchy of criteria for constructing such rings it falls ex-
its own diameter in a dimensionless time of1/The poly-  actly midway between the least restrictive and most restric-
dispersity of equimolar binary systems wih< 1 is given by  tive criteria possible. Thus, we have combined the Voronoi
and ring statistics methods in order to provide a reasonable
s=1_ 2y 3) measure of the local structure around each particle. This pro-
1+’ cess involves two steps. First the bond network is determined

using a modified Voronoi decomposition. Second the local

which for the present system gives=0.05. The one- structure of a given particle is determined. This involves tak-
component system used had a system 8ize864, which ing all the particles bonded to the chosen particle and deter-
was found to be large enough to allow rapid crystallization,mining their topology from the bonds between them, exclud-
which was all that was of interest concerning a one-ing the chosen particle, using the shortest-path ring criterion.
component system for this paper. The binary system siz&his prescription was carried directly over to the binary sys-
chosen hadN= 10976, the larger system size was necessaryems studied here. We found that the method was readily and
for the more detailed study performed to find out what mi-unambiguously able to find those particles that have a fcc
croscopic mechanisms are retarding the crystallization proand those that have a hcp local environment. This proved to

cess. be sufficient to characterize the crystallization process at the
The pressur@ or compressibility factoZ=pV/NkT and  microscopic level.
system radial distribution functiog(r) were monitored to In order to prepare the quenched states, a low-density

give a gross indication of the stability of the system. In fact,equilibrium fluid configuration was increased in density by
as the pressure difference between the quenched fluid and the amountdp everydt time intervals by scaling the particle
crystal is quite pronounced in the NVT system, the observapositions. The configuration is then corrected for any spheres
tion of a falling pressure was interpreted as being an indicathat slightly overlap by simply moving them apart the mini-
tive measure of crystallization. While this is a rather unso-mum necessary distance. This process is repeated until no
phisticated approach it was only used as an overall indicatiogpheres are overlapping with the simulation and then are al-
as to the physical phase present. lowed to run for another time interval aft. The change in

In order to follow the process of crystallization we need adensitydp is small and the process approximates a constant
more detailed picture of the local microscopic structure orquench ratalp/dt. We have found our results to have little
environment of each atom in the system. In general it issensitivity on the quench rate within reasonable limits. The
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effect of quench rate will not be investigated further in thisthe melting and freezing volume fractions as a function of
paper. The values used for the change in density and the tinmmposition. The data from this paper has been manipulated
interval in the presented paper adp=0.025 anddt in order to obtain the desired phase diagram for our current
=0.04. All quenches were started from an equilibrated fluidpurposes. In addition, any fluid equation of state data neces-
at a volume fraction ofh=0.3. sary was obtained from the expression of Mansairal.

We find it necessary to identify a relaxation time for the [22] and any crystal equation of state data was obtained from
fluids studied. In general the relaxation time will depend onmolecular dynamic§MD) simulations of fcc crystals. We
the dynamical quantity under consideration, however, aktave verified by MD calculations that, below melting, the
much experimental work has been done measuring and chagxpression of Mansooet al. [21] gives results to an accu-
acterizing intermediate scattering functions around the peatkacy of better than 1% for the equation of state data under
of the static structure factor in colloidal systems, we allowconsideration.
this to influence our relaxation-time scale. Drawing upon the In order to proceed we write down the equations which
work of van Megeret al.[18] we define the following esti- constrain the system in the desired fashion. First we define
mate of the fluid relaxation timeas a reasonable one for the the variablep as follows,

urposes at hand
purp v, V.

(Ar(7)2)~0.25. (4) pzv—T, 1_p:V_T’ 5)

This is the time a particle takes to diffuse a distance equal t¥/hereVs is the volume of the fluid phas¥ is the volume
its own radius in the length units used here. The mean-squa the solid phase, andy is the total volume of the system.
displacement was calculated directly from the particle trajecYVe already know the volume fractions of the coexisting fluid
tories, and in the case of the binary fluid, the small and the?s and solid¢s phaseg21], but we need to find the correct
large spheres were not discriminated between. The long-timgalue for p, which gives the required total composition of

linear regime of the mean-square displacement was used t%r=0.5. The total volume fractiop of the system may
calculate the long-time diffusion coefficient. now be expressed in terms of the variables so far defined

¢r=pdi+(1-p)ds. (6)

The total composition of the system may also be expressed

in terms of the composition of the fluiX; and solid Xg
In this section the detailed phase behavior of an equimolaghases

hard-sphere system having a size ratioyo£0.9, is pre-
sented along with the way it was determined. As it turns out
the approach of presenting the phase behavior, at a fixed total
composition, as a function of the total volume fraction, pro-
vides important insight to the problem at hand. These are thesherep, p;, andp are the number densities of the solid
conditions, after all, under which an experimental colloidaland fluid phases and of the total system, respectively. Let the
system is constrained, that is upon changing the volume fracaumber density be representeddyy, the volume fraction by
tion of such a system, its particle-size distribution remainsg, and the composition b¥,, wherex may be defined as
unaltered[4,19,20. Other work on the phase behavior of equivalent tos,for T as required, then the three equations
binary and polydisperse hard-sphere systems, either fails t@lating the number density to the volume fraction are
acknowledge this important aspect, or does not examine it in

IIl. RESULTS AND DISCUSSION

A. Phase behavior

X=Xl (1= )+ X p=0.5, @
PT PT

the detail presented here. Some of the results in this section _ 60y 1 8
will be drawn upon later. P T =X+ X ) ®

The detailed phase behavior of the binary system is more
complicated, than the one-component system, due to its extiehe five equationg§Egs. (6), (7), and (8)] thus allow the
thermodynamic degree of freedom. This results in the comeetermination of the five unknowngr, p, andp,. These
position of both the liquid and the solid phases changing, asquations were solved using iterative technigues. The coex-
a function of the total volume fraction, as the coexistentistent crystal crystal region was determined in the exact same
liquid-solid and solid-solid regions are traversed. In contrastmanner; in this case the subscriftenoted the second solid
to the one-component system, this results in the pressure phase.
the binary system varying as the coexistent liquid-solid re- The dimensionless pressure given®y=Z¢, whereZ is
gion is traversed. the compressibility factor as a function of volume fraction,
Along with several other size ratios the phase diagrams ofnay be seen in Fig. 1 for the fluid and crystal phases of both
binary hard spheres with size ratjo=0.9, have been calcu- the one-component and binary systems. This gives a pressure
lated by Kranendonk and Frenkg21]. In addition to the unit that would be, in general, dependent on the composition,
coexistent fluid-crystal region this system has a coexistentbowever, as we are keeping the total composition fixed and
crystal-crystal region at high volume fractions. Their work investigating the pressure of the total system, this is of no
shows which compositions coexist at a given pressure foconsequence. However, as this dimensionless pressure is in-
both fluid-crystal and crystal-crystal regions. It also presentyariant to changes in the fundamental length scale of the
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system, it allows a direct comparison between the binary anc
one-component systems. It can be seen that the equilibriun
fluid pressure is perturbed very little in going from the one-
component to the binary system. The coexistent regions fol
both systems can be readily seen, with the binary systen
having a freezing point above that of the one-component ¢
system. Unlike the one-component system the pressure of the T
binary system increases in going from freezing to melting. FIG. 2. (a) The compositiorX of the equilibrium phases as a
To understand this, recall that for the binary system, in confunction of the systems total volume fractiop; for the two-
trast to the one-component system, the two coexisting phasesmponent system. Shown are the regions of stability of the fluid,
will have individual volume fractions and compositions that coexisting fluid solid, substitutional crystadrystal 3 and the seg-
change as the coexistent region is traversed. Above meltingegated crystalcrystal 2. (b) The total volume of crystal in the
the binary system has a substitutional crystal branch that haystem relative to the total volum¥cysi/ Vo Shown as crosses
a significantly higher pressure than the corresponding onéznd the total volume of crystal l in thg system relative to the total
component crystal. At the volume fraction gf=0.593 the vomme‘vlcrystallvTotal shown as filled circles versus the total vol-

) . me fraction of the systenp.
binary system undergoes a phase change from a single sub:
stitutional crystal to two coexisting substitutional crystals of
different composition§21]. At close packingp=0.740, two IV. CRYSTALLIZATION RATES

coexistent one-component crystals would be obtained, one Here the crystallization process as a function of volume
for each speciel23]. The composition and amount of crystal fraction was investigated for both the one-component and
as a function of volume fraction for the various phases of thejinary systems. In order to see if the metastable states pro-
binary system, are shown in FiggaPand 2b), respectively.  duced in these studies are truly long lived or not, we first had
It can be readily seen that just above freezing, the solid phase obtain a realistic measure of the relaxation time in the
is richer in large particles than the total system. Crystallizastable fluid. This was so that we can quantify the meaning of
tion from the melt will thus involve compositional rearrange- long lived in this context. Now, experimentally small
ments between the two phases in this region. On the othahanges in polydispersity have been found to have a much
hand, crystallization from the melt just below melting will more critical effect on crystallization rates than on fluid dy-
involve very little compositional rearrangement. Here wenamics for polydispersities aroursd=0.06[20]. As the bi-
would start with a fluid having the composition of the total nary fluids turn out to be considerably more stable than their
system and finish with an equilibrium state of nearly all crys-one-component counterparts, the relaxation times found for
tal having a composition very close to the total compositionthe binary fluids will be assumed to be valid for both. The
of the system. Also of interest is that the amount of crystal inrelaxation times at various volume fractiogismay be seen
going from freezing to melting is not a linear function of in Table | along with the long-time diffusion coefficients and
volume fraction as it is for the one-component system, se¢he time taken by the systems to undergo significant crystal-
Fig. 2(b). As has already been mentioned, the implicationdization.

that the work discussed in this section has on the stability of The compressibility factoZ of the one-component sys-
the quenched fluid branch, will be discussed in more detaitem as a function of time for several volume fractions at and
later. above melting, may be seen in Fig. 3. As can be seen, the

Vcryst/V Total

Fluid

0.45 0.5 0.55 0.6 0.65
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TABLE I. Diffusion constants and characteristic times for the 30
hard-sphere systems studied. Volume Fraction
28 |- wrieerns 0,55
——0.56
Crystallization
times, Crystallization
Volume Relaxation Diffusion one-component times,
fractions,p  time®  coefficien? system binary system y 4 s b
0.55 1136 0.022 75 >4000 -
0.56 25.0 0.010 75 2250 ‘
0.57 83.3 0.003 50 1600 ‘
0.58 500 0.0005 50 >4000 $
16 L L L . L L L . L
aEstimated using E({4) 0 500 1000 1500 2000 2500 3000 3500 4000
PMeasured from the long-time behavior of the mean-square dis- t

placement. FIG. 4. The compressibility factéZ=pV/NKT as a function of

time in reduced units for various volume fractions for the two-

crystallization process was very fast. Immediately after theComloonent hard-sphere system. The arrow on the time axis indi-

quench, the pressure fell r.apldly to a value cIose_to the Pré%ates the approximate time it takes for the one-component system to
sure of the metastable fluid branch for the polydisperse SYSrystallize.

tem. Shortly after this the pressure fell again, this time due to

the system crystallizing. This information is used to obtain a  Thjs is very different to experimental results on colloidal
rough estimate of the time scale on which the system undet, stems, where long-lived metastable states are observed, al-
goes significant crystallization, see Table_ . Still refernng tolowing measurements on stationary states to be obtained. In
Table I_, we compare the crystallization times to_the fluid’'s¢act colloidal systems have been found to undergo a maxi-
relaxation times. At the lowest volume fraction @b  mum nucleation rate somewhere near melting with the crys-
=0.545, the fluid’s relaxation time was found to be somey)jization process slowing down dramatically, at higher vol-
five times less than the crystallization time, however, as the, e fractions. as the glass transition is approadi&di In
volume fraction was increased, it was found that the relaxyontrast the one-component system here crystallizes rapidly
ation time increased dramatically while the crystallizationg; these high volume fractions. It should be noted that the
time underwent very little change, until at the highest vol-gma|| system size of the one-component simulations could
ume fraction of¢=(_).58, it was found that the rela_xatlo_n retard the crystallization process, thus using a larger system
time was some ten times greater than the crystallization timeapy only decrease the lifetime of these unstable fluid states
Clearly the metastable fluid branch ceases to exist at a Vol ther.  As we have no other interest here in the one-
ume fraction significantly lower than the experimental 9|asscomponent system other than to illustrate how unstable the

transition volume fraction of¢y=0.575[18]. This is in  gense fluid states above melting are, larger simulations were
agreement with other recent studies using computerpot carried out in this paper.

simulation techniquef7,8]. Older studies indicating such a  The equivalent data for the binary system are shown in
metastable fluid state clearly used too few particles and/opig_ 4. Here we see that the crystallization process was
were not of sufficient duration to observe crystallization giowed down dramatically for all volume fractions by a mini-
[3,24]. Importantly our results showed little dependence onyym of a factor of 30. Importantly the fluid state was main-
quench history. tained for many relaxation times at all volume fractions be-
fore significant crystallization took place, as may be seen in

% Table I. Thus, in this case, the dynamics of the fluid state

Volume Fraction

288 e 0.545 calculated over this time can be taken to measure the behav-
26} - ior of a true stationary state. While the lowest volume frac-
b __ggg tion ¢=_0.55 showed no sign of crystal!lzatlon on the simu-

. lation time scale, the systems at intermediate volume

2L fractions did show very slow crystallization. However, at the

highest volume fraction of$p=0.58, a dramatic slowing
down in the crystallization process was once again observed.
The above behavior is qualitatively in agreement with the
experimental colloid results discussed above and, thus, we
will now explore the underlying reasons for this behavior.
12 b L P : L It is normally assumed that the rate of crystallization is
0 50 100 150 200 250 300 350 400 . . . ..
t contrqlled_by a com_b_|nat|on of the.rmodynamlc driving f_orce
and diffusional mobility{ 25]. Thus, in order to start to gain a
FIG. 3. The compressibility facta=pV/NKT as a function of ~ deeper understanding of the above results, we will refer back
time in reduced units for various volume fractions for the one-to the phase diagrams in Fig. 1 of both the one-component
component hard-sphere system. and binary systems. It can readily be seen that the pressure of

20
18 [
16 |

14|
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FIG. 5. The number of hard spheres having an fcc or hep local - FIG. 6. The compositiorX, of hard spheres having a local
environment,Ng, relative to the total numbeN; as a function of  crystalline environment as a function of time for the two-
time for the two-component hard-sphere system. component hard-sphere system.

the substitutional crystal is significantly higher than that ofbe seen that the crystal is slightly richer in large spheres. It is
the corresponding one-component crystal. This isn’t surprisnot hard to envisage that the placement of the small spheres
ing as the substitutional crystal packs with less efficiencyin the substitutional crystal reduces packing efficiency.
than the one-component crystal. In contrast to this there igvhile the composition of the crystal may not seem very
little difference between the pressures of the binary and onedifferent to that of the total system, the difference is certainly
component fluids. This results in a lower thermodynamicof statistical significance. To demonstrate this imagine we
driving force, at volume fractions above melting, for the bi- have an infinitely large supply of two types of particles, spe-
nary system and in turn much longer crystallization timescies 1 and 2. When we select one of these particles at ran-
Figure 4 shows that the binary system at the volume fractiogiom, the probability of its identity being species 1 is given
of ¢=0.55, does not crystallize on the experimental MD by the total composition of the syste¥y=0.5. Let us ran-
time scale due to the lack of thermodynamic drive. Howeverdomly selectN, particles from the supply and thus obtain
as the volume fraction is increased, the substitutional crystadome random compositioN, . We then calculate the prob-
becomes more and more thermodynamically favored ovegpility of this random compositiorX, being less than the
the fluid. This results in the crystallization process starting atomposition obtained foK,, in the simulation. The results
shorter and shorter times. However at the volume fraction ofrom this binomial distribution problerf26] show the prob-
¢=0.58, the crystallization process has once again becomgility to be less than 1% from the time any significant
suppressed, even though at this volume fraction there is @amount of crystal has formed. This demonstrates that the
large thermodynamic drive for the crystallization process. Asrystallization process requires systematic compositional
we shall see in the next section, this is due to the composichanges in going from the fluid to the equilibrium substitu-
tional differences required for the crystallization process taijonal crystal. It should be noted that this is still below the
proceed at such a high volume fraction, which can only arisgolume fraction of¢=0.593, above which the equilibrium
from large scale diffusional processes, which have becomstate consists of two substitutional crystal phases. The re-

greatly suppressed. quired compositional changes demand large-scale diffusion,
however, it is large-scale diffusion that is suppressed upon
V. RING STATISTICS AND STRUCTURAL CHANGES approaching the glass transition, as can be seen from the

behavior of the diffusion coefficient shown in Table I. Thus
the binary system forms a stable glass while the arrest of

In the previous section we discussed the thermodynamilarge-scale diffusion does little to inhibit crystallization in
considerations behind the observed behavior of the metdhe case of the one-component system. In this case only local
stable state in a binary hard-sphere fluid of small polydisperrearrangements are needed to produce a crystalline arrange-
sity. Here we wish to discuss some of the underlying micro-ment from a dense fluid arrangement.
scopic structural causes of this behavior.

As discussed in Sec. Il we use ring statistics to character-
ize the local atomic structure of the system and, in particular,
obtain both the number and type of particles with local fcc The one-component hard-sphere fluid has been found to
and hcp environments as a function of time. The number obe unstable above the melting volume fraction. It is not
particlesN, thus labeled as hcp or fcc, as a function of timestable for times long relative to measured relaxation times
for the binary system, are shown in Fig. 5. By comparing thisand it is not meaningful to talk of a metastable fluid for such
data to Fig. 4, one sees that the pressure is indeed a goadsystem. It may be that metastable states can be stabilized
indicator of the degree of crystallinity. The composition of by using very small systeni8,24]. However, an equimolar
the crystalX, as a function of time is shown in Fig. 6. It can binary hard-sphere system with size rajie 0.905, has been

DURING CRYSTALLIZATION

VI. CONCLUSIONS
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found to have a long-lived, metastable fluid branch abovepositional changes even at volume fractions where the equi-
melting. Two separate mechanisms resulting in this differdibrium phase is a single substitutional crystal. These com-
ence have been established. At volume fractions slightlyositional changes demand large-scale diffusion, which is a
above melting, the binary system has a reduced thermodysroperty that slows down dramatically with increasing vol-

namic drive due to the reduced packing efficiency of theume fraction; once again crystallization becomes inhibited

substitutional crystal. At higher volume fractions the thermo-

leading to a long-lived metastable disordered system. Thus,

dynamic drive rises, which favors crystallization, howeverwe conclude that a stable glassy phase exists for binary sys-
here the crystallization process is found to necessitate contems, which is not the case for the one-component system.
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