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Molecular dynamics study of the stability of the hard sphere glass
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Glassy states have been observed in hard-spherelike colloidal suspensions; however, some recent work
suggests that a stable, one-component hard-sphere glass doesn’t exist. A possible resolution of this dilemma is
that colloidal glass formation results from a small degree of particle polydispersity. In order to investigate this
further, we used the molecular-dynamics method to explore the phase behavior of both one- and two-
component hard-sphere systems. It was found that the metastable fluid branch of the one-component system
ceased to exist at a volume fraction marginally above melting, instead this system always crystallized within a
relatively short period of time. Binary systems with a size ratiog50.9 were then used as the simplest
approximation to model a polydisperse hard-sphere colloidal system. Here the crystallization process was
slowed down dramatically for all volume fractions and the fluid state was maintained for many relaxation
times. Indeed, at the lowest volume fractionf50.55 no sign of crystallization was seen on the simulation time
scale. The systems at intermediate volume fractions did eventually crystallize but at the highest volume
fraction off50.58, a dramatic slowing down in the crystallization process was observed. This is qualitatively
in agreement with the experimental results on colloidal suspensions. Using the insight gained from this paper,
the reasons behind a polydisperse system forming a stable glass, in contrast to the one-component system, are
elucidated.

DOI: 10.1103/PhysRevE.64.021506 PACS number~s!: 64.70.Pf
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I. INTRODUCTION

One of the most interesting results from the pioneer
computer simulation studies of Alder and Wainwright@1# and
of Wood and Parker@2# was that a system of purely repulsiv
hard spheres in periodic boundary conditions can exis
both a fluidlike state and a crystalline state~these states be
ing linked by first-order phase transition!. Subsequent simu
lation studies indicated that the hard-sphere system may
form a long-lived glassy state. In order to explore the qu
tion of hard-sphere glass formation, Woodcock@3# intro-
duced schemes for compressing the equilibrium hard-sp
fluid to a supercooled fluid state. His results seemed to in
cate the existence of a glassy state for the one-compo
hard-sphere system. More recently Pusey and van Mege@4#
determined that a hard-spherelike colloidal suspension
only exhibited an equilibrium fluid and solid phase, but
high densities a long-lived glassy phase was also obse
after shear melting. Despite the small amount of polydisp
sity, ~defined as the standard deviation of the particle s
distribution divided by the mean size,s! of arounds50.05,
the observed equilibrium phase behavior could be accura
mapped to that predicted for a one-component hard-sp
system by computer simulation@5#. This observation is con
sistent with more recent computational work@6# where only
subtle changes in the experimentally observable prope
~Pusey and van Megen! are predicted for the equilibrium
phase behavior of a system with this amount of polydisp
sity, compared to a monodisperse system.

Despite the results of this early work there is increas
evidence from computer-simulation studies that monod
perse hard-sphere systems do not form a stable glassy p
@7,8#. However the mechanisms responsible for this diff
ence in behavior between monodisperse and polydisp
hard-sphere systems are yet to be elucidated.
1063-651X/2001/64~2!/021506~7!/$20.00 64 0215
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Here we have made a theoretical study of hard-sph
systems using the molecular-dynamics~MD! method to pro-
vide some insight into the occurrence and suppression
crystallization. Simulations of one-component systems
used to confirm that deeply quenched fluids are indeed
stable and crystallize rapidly. We have studied this ove
larger range of volume fractions and for a longer duration
time than has been done in previous work.

Although simulating the crystallization of a one
component hard-sphere system is now a relatively easy t
extending such studies to a model of a truly polydispe
system is quite difficult due to the added complexity in c
culating the precise and relevant phase behavior. Hence
have carried out hard-sphere MD simulations using a bin
system with a size ratiog50.905 to investigate the problem
as a first step towards modeling a truly polydisperse sys
with a small value ofs. While it might be thought that such
a binary system is somewhat different from a typical coll
dal dispersion of narrow size distribution, we found that t
crystallization process is significantly retarded, relative to
one-component system, and that behavior is seen w
mimics that observed in such colloidal systems. More imp
tantly the reasons for the crystallization processes being
pressed in the binary system are shown here to be b
readily understandable and to be relevant to understan
the behavior of the polydisperse system.

II. SIMULATION DETAILS

Molecular-dynamics simulations of one- and tw
component hard-sphere systems were performed in peri
boundary conditions in which the total number of particl
N, the system’s volumeV, and the internal energyU were
held fixed, i.e., we used a microcanonical ensemble. T
©2001 The American Physical Society06-1
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hard-sphere system has no potential energy; thus if the in
nal energy is held fixed, the temperatureT will also be held
fixed, and the microcanonical ensemble is equivalent to
canonical ensemble. The computational procedures are
dard and extensively documented@9#. All length scales in the
simulations are expressed in terms ofs1 , the diameter of the
particles of species one, and the binary systems have a
ratio g5s1 /s250.905. Rather than the number densityr,
the volume fractionf will be used to define particle concen
tration, which is defined as the total volume of all the p
ticles in the simulation divided by the volume of the simu
tion box. For the one-component system we have

f5
pNs3

6V
5

ps3

6
r ~1!

and for the binary system we have

f5
p~N1s1

31N2s2
3!

6V
5

ps1
3

6
rS N1

N
1

N2

N

1

g3D . ~2!

To a first approximation this allows one to directly compa
the binary system to a corresponding one-component sys
as, in contrast to the number density, the volume fract
allows the construction of a phase diagram that is invar
to the particle diameters. The volume fractions of freezing
and melting for one-component hard spheres are 0.494
0.545, respectively@5#. The binary systems used were su
that both species had the same mass,m15m25m, and were
equimolar,N15N25N/2. All times were measured in unit
of s1Am/kT, as such a particle of species one undergo
ballistic dynamics will, on root-mean-square average, tra
its own diameter in a dimensionless time of 1/). The poly-
dispersity of equimolar binary systems withg,1 is given by

s512
2g

11g
, ~3!

which for the present system givess50.05. The one-
component system used had a system sizeN5864, which
was found to be large enough to allow rapid crystallizatio
which was all that was of interest concerning a on
component system for this paper. The binary system
chosen hadN510 976, the larger system size was necess
for the more detailed study performed to find out what m
croscopic mechanisms are retarding the crystallization p
cess.

The pressurep or compressibility factorZ5pV/NkT and
system radial distribution functiong(r ) were monitored to
give a gross indication of the stability of the system. In fa
as the pressure difference between the quenched fluid an
crystal is quite pronounced in the NVT system, the obser
tion of a falling pressure was interpreted as being an ind
tive measure of crystallization. While this is a rather uns
phisticated approach it was only used as an overall indica
as to the physical phase present.

In order to follow the process of crystallization we need
more detailed picture of the local microscopic structure
environment of each atom in the system. In general i
02150
r-

e
an-

ize

-

m
n
t

nd

g
l

,
-
e

ry
-
o-

,
the
-
-

-
n

r
s

difficult to unambiguously classify and analyze the structu
of systems having only local order, such as nucleating flu
Voronoi analysis has been extensively used to study am
phous materials, crystalline materials@10,11#, and to follow
the process of crystallization@12–15#. The Voronoi method
decomposes space into a set of polyhedra associated
each particle. The polyhedron for each particle is defined
the region of space closer to that particle than it is to a
other particle in the material. Often the shape of the
Voronoi cells are used directly to measure the local envir
ment of each particle and to infer something about the deg
of crystalline order present. However there are some pr
lems involving degeneracies of the faces of these polyhe
@16#. In fact distortions of the shape of the Voronoi polyn
dra by such effects as thermal motion makes it difficult
measure the fcc and hcp local environments in nuclea
systems. Thus in the traditional Voronoi method@10,11# fcc
and hcp environments are unstable with respect to ther
distortions. Methods have been suggested to improve
analysis, which are not entirely without problems. Thus
have developed a new method to identify the local fcc or h
environments in a nucleating system@16#.

Another method used to analyze systems, which are la
ing in long-range order, is ring statistics. Here a measure
the connectivity of the atoms in the system is sought. Ma
definitions of these rings are possible, however Franzb
@17# showed that it is possible to define a set of rings by
shortest-path criterion, which is probably the most natu
and consistent way of performing a ring analysis. The res
ant measure of local structure is shown to agree well w
intuitive ideas about short-to medium-range structure, an
a hierarchy of criteria for constructing such rings it falls e
actly midway between the least restrictive and most rest
tive criteria possible. Thus, we have combined the Voro
and ring statistics methods in order to provide a reasona
measure of the local structure around each particle. This
cess involves two steps. First the bond network is determi
using a modified Voronoi decomposition. Second the lo
structure of a given particle is determined. This involves ta
ing all the particles bonded to the chosen particle and de
mining their topology from the bonds between them, exclu
ing the chosen particle, using the shortest-path ring criter
This prescription was carried directly over to the binary s
tems studied here. We found that the method was readily
unambiguously able to find those particles that have a
and those that have a hcp local environment. This prove
be sufficient to characterize the crystallization process at
microscopic level.

In order to prepare the quenched states, a low-den
equilibrium fluid configuration was increased in density
an amountdr everydt time intervals by scaling the particl
positions. The configuration is then corrected for any sphe
that slightly overlap by simply moving them apart the min
mum necessary distance. This process is repeated unt
spheres are overlapping with the simulation and then are
lowed to run for another time interval ofdt. The change in
densitydr is small and the process approximates a cons
quench ratedr/dt. We have found our results to have littl
sensitivity on the quench rate within reasonable limits. T
6-2
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MOLECULAR DYNAMICS STUDY OF THE STABILITY . . . PHYSICAL REVIEW E64 021506
effect of quench rate will not be investigated further in th
paper. The values used for the change in density and the
interval in the presented paper aredr50.025 and dt
50.04. All quenches were started from an equilibrated fl
at a volume fraction off50.3.

We find it necessary to identify a relaxation time for t
fluids studied. In general the relaxation time will depend
the dynamical quantity under consideration, however,
much experimental work has been done measuring and c
acterizing intermediate scattering functions around the p
of the static structure factor in colloidal systems, we allo
this to influence our relaxation-time scale. Drawing upon
work of van Megenet al. @18# we define the following esti-
mate of the fluid relaxation timet as a reasonable one for th
purposes at hand

^Dr ~t!2&'0.25. ~4!

This is the time a particle takes to diffuse a distance equa
its own radius in the length units used here. The mean-sq
displacement was calculated directly from the particle traj
tories, and in the case of the binary fluid, the small and
large spheres were not discriminated between. The long-
linear regime of the mean-square displacement was use
calculate the long-time diffusion coefficient.

III. RESULTS AND DISCUSSION

A. Phase behavior

In this section the detailed phase behavior of an equim
hard-sphere system having a size ratio ofg50.9, is pre-
sented along with the way it was determined. As it turns
the approach of presenting the phase behavior, at a fixed
composition, as a function of the total volume fraction, p
vides important insight to the problem at hand. These are
conditions, after all, under which an experimental colloid
system is constrained, that is upon changing the volume f
tion of such a system, its particle-size distribution rema
unaltered@4,19,20#. Other work on the phase behavior
binary and polydisperse hard-sphere systems, either fai
acknowledge this important aspect, or does not examine
the detail presented here. Some of the results in this sec
will be drawn upon later.

The detailed phase behavior of the binary system is m
complicated, than the one-component system, due to its e
thermodynamic degree of freedom. This results in the co
position of both the liquid and the solid phases changing
a function of the total volume fraction, as the coexiste
liquid-solid and solid-solid regions are traversed. In contr
to the one-component system, this results in the pressur
the binary system varying as the coexistent liquid-solid
gion is traversed.

Along with several other size ratios the phase diagram
binary hard spheres with size ratiog50.9, have been calcu
lated by Kranendonk and Frenkel@21#. In addition to the
coexistent fluid-crystal region this system has a coexis
crystal-crystal region at high volume fractions. Their wo
shows which compositions coexist at a given pressure
both fluid-crystal and crystal-crystal regions. It also prese
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the melting and freezing volume fractions as a function
composition. The data from this paper has been manipula
in order to obtain the desired phase diagram for our curr
purposes. In addition, any fluid equation of state data ne
sary was obtained from the expression of Mansooriet al.
@22# and any crystal equation of state data was obtained f
molecular dynamics~MD! simulations of fcc crystals. We
have verified by MD calculations that, below melting, th
expression of Mansooriet al. @21# gives results to an accu
racy of better than 1% for the equation of state data un
consideration.

In order to proceed we write down the equations wh
constrain the system in the desired fashion. First we de
the variablep as follows,

p5
Vf

VT
, 12p5

Vs

VT
, ~5!

whereVf is the volume of the fluid phase,Vs is the volume
of the solid phase, andVT is the total volume of the system
We already know the volume fractions of the coexisting flu
f f and solidfs phases@21#, but we need to find the correc
value for p, which gives the required total composition o
XT50.5. The total volume fractionfT of the system may
now be expressed in terms of the variables so far define

fT5pf f1~12p!fs . ~6!

The total composition of the system may also be expres
in terms of the composition of the fluidXf and solid Xs
phases

XT5Xs

rs

rT
~12p!1Xf

r f

rT
p50.5, ~7!

wherers , r f , andrT are the number densities of the sol
and fluid phases and of the total system, respectively. Let
number density be represented byrx , the volume fraction by
fx and the composition byXx , wherex may be defined as
equivalent tos,f or T as required, then the three equatio
relating the number density to the volume fraction are

rx5
6fx

p

1

~12Xx1Xx /g3!
. ~8!

The five equations@Eqs. ~6!, ~7!, and ~8!# thus allow the
determination of the five unknownsfT , p, and rx . These
equations were solved using iterative techniques. The co
istent crystal crystal region was determined in the exact sa
manner; in this case the subscriptf denoted the second soli
phase.

The dimensionless pressure given byP* 5Zf, whereZ is
the compressibility factor as a function of volume fractio
may be seen in Fig. 1 for the fluid and crystal phases of b
the one-component and binary systems. This gives a pres
unit that would be, in general, dependent on the composit
however, as we are keeping the total composition fixed
investigating the pressure of the total system, this is of
consequence. However, as this dimensionless pressure
variant to changes in the fundamental length scale of
6-3
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S. R. WILLIAMS, I. K. SNOOK, AND W. van MEGEN PHYSICAL REVIEW E64 021506
system, it allows a direct comparison between the binary
one-component systems. It can be seen that the equilib
fluid pressure is perturbed very little in going from the on
component to the binary system. The coexistent regions
both systems can be readily seen, with the binary sys
having a freezing point above that of the one-compon
system. Unlike the one-component system the pressure o
binary system increases in going from freezing to melti
To understand this, recall that for the binary system, in c
trast to the one-component system, the two coexisting ph
will have individual volume fractions and compositions th
change as the coexistent region is traversed. Above mel
the binary system has a substitutional crystal branch that
a significantly higher pressure than the corresponding o
component crystal. At the volume fraction off50.593 the
binary system undergoes a phase change from a single
stitutional crystal to two coexisting substitutional crystals
different compositions@21#. At close packingf50.740, two
coexistent one-component crystals would be obtained,
for each species@23#. The composition and amount of cryst
as a function of volume fraction for the various phases of
binary system, are shown in Figs. 2~a! and 2~b!, respectively.
It can be readily seen that just above freezing, the solid ph
is richer in large particles than the total system. Crystalli
tion from the melt will thus involve compositional rearrang
ments between the two phases in this region. On the o
hand, crystallization from the melt just below melting w
involve very little compositional rearrangement. Here w
would start with a fluid having the composition of the tot
system and finish with an equilibrium state of nearly all cry
tal having a composition very close to the total composit
of the system. Also of interest is that the amount of crysta
going from freezing to melting is not a linear function
volume fraction as it is for the one-component system,
Fig. 2~b!. As has already been mentioned, the implicatio
that the work discussed in this section has on the stability
the quenched fluid branch, will be discussed in more de
later.

FIG. 1. A comparison of the phase diagrams of the o
component hard-sphere system~dashed lines! and an equimolar,
two-component hard-sphere system with a radius ratio of 0.9~solid
lines!.
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IV. CRYSTALLIZATION RATES

Here the crystallization process as a function of volu
fraction was investigated for both the one-component a
binary systems. In order to see if the metastable states
duced in these studies are truly long lived or not, we first h
to obtain a realistic measure of the relaxation time in
stable fluid. This was so that we can quantify the meaning
long lived in this context. Now, experimentally sma
changes in polydispersity have been found to have a m
more critical effect on crystallization rates than on fluid d
namics for polydispersities arounds50.06 @20#. As the bi-
nary fluids turn out to be considerably more stable than th
one-component counterparts, the relaxation times found
the binary fluids will be assumed to be valid for both. T
relaxation times at various volume fractionsf may be seen
in Table I along with the long-time diffusion coefficients an
the time taken by the systems to undergo significant crys
lization.

The compressibility factorZ of the one-component sys
tem as a function of time for several volume fractions at a
above melting, may be seen in Fig. 3. As can be seen,

-

FIG. 2. ~a! The compositionX of the equilibrium phases as
function of the systems total volume fractionfT for the two-
component system. Shown are the regions of stability of the fl
coexisting fluid solid, substitutional crystal~crystal 1! and the seg-
regated crystal~crystal 2!. ~b! The total volume of crystal in the
system relative to the total volume,Vcryst/VTotal shown as crosses
and the total volume of crystal 1 in the system relative to the to
volume, Vcrystal/VTotal shown as filled circles versus the total vo
ume fraction of the systemfT .
6-4
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MOLECULAR DYNAMICS STUDY OF THE STABILITY . . . PHYSICAL REVIEW E64 021506
crystallization process was very fast. Immediately after
quench, the pressure fell rapidly to a value close to the p
sure of the metastable fluid branch for the polydisperse
tem. Shortly after this the pressure fell again, this time due
the system crystallizing. This information is used to obtai
rough estimate of the time scale on which the system un
goes significant crystallization, see Table I. Still referring
Table I, we compare the crystallization times to the fluid
relaxation times. At the lowest volume fraction off
50.545, the fluid’s relaxation time was found to be som
five times less than the crystallization time, however, as
volume fraction was increased, it was found that the rel
ation time increased dramatically while the crystallizati
time underwent very little change, until at the highest v
ume fraction off50.58, it was found that the relaxatio
time was some ten times greater than the crystallization ti
Clearly the metastable fluid branch ceases to exist at a
ume fraction significantly lower than the experimental gla
transition volume fraction offg50.575 @18#. This is in
agreement with other recent studies using compu
simulation techniques@7,8#. Older studies indicating such
metastable fluid state clearly used too few particles an
were not of sufficient duration to observe crystallizati
@3,24#. Importantly our results showed little dependence
quench history.

TABLE I. Diffusion constants and characteristic times for t
hard-sphere systems studied.

Volume
fractions,f

Relaxation
timea

Diffusion
coefficientb

Crystallization
times,

one-component
system

Crystallizatio
times,

binary syste

0.55 11.36 0.022 75 .4000
0.56 25.0 0.010 75 2250
0.57 83.3 0.003 50 1600
0.58 500 0.0005 50 .4000

aEstimated using Eq.~4!.
bMeasured from the long-time behavior of the mean-square
placement.

FIG. 3. The compressibility factorZ5pV/NkT as a function of
time in reduced units for various volume fractions for the on
component hard-sphere system.
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This is very different to experimental results on colloid
systems, where long-lived metastable states are observe
lowing measurements on stationary states to be obtained
fact colloidal systems have been found to undergo a m
mum nucleation rate somewhere near melting with the cr
tallization process slowing down dramatically, at higher v
ume fractions, as the glass transition is approached@19#. In
contrast the one-component system here crystallizes rap
at these high volume fractions. It should be noted that
small system size of the one-component simulations co
retard the crystallization process, thus using a larger sys
can only decrease the lifetime of these unstable fluid st
further. As we have no other interest here in the on
component system other than to illustrate how unstable
dense fluid states above melting are, larger simulations w
not carried out in this paper.

The equivalent data for the binary system are shown
Fig. 4. Here we see that the crystallization process w
slowed down dramatically for all volume fractions by a min
mum of a factor of 30. Importantly the fluid state was ma
tained for many relaxation times at all volume fractions b
fore significant crystallization took place, as may be seen
Table I. Thus, in this case, the dynamics of the fluid st
calculated over this time can be taken to measure the be
ior of a true stationary state. While the lowest volume fra
tion f50.55 showed no sign of crystallization on the sim
lation time scale, the systems at intermediate volu
fractions did show very slow crystallization. However, at t
highest volume fraction off50.58, a dramatic slowing
down in the crystallization process was once again obser
The above behavior is qualitatively in agreement with t
experimental colloid results discussed above and, thus,
will now explore the underlying reasons for this behavior

It is normally assumed that the rate of crystallization
controlled by a combination of thermodynamic driving for
and diffusional mobility@25#. Thus, in order to start to gain
deeper understanding of the above results, we will refer b
to the phase diagrams in Fig. 1 of both the one-compon
and binary systems. It can readily be seen that the pressu

s-

-

FIG. 4. The compressibility factorZ5pV/NkT as a function of
time in reduced units for various volume fractions for the tw
component hard-sphere system. The arrow on the time axis i
cates the approximate time it takes for the one-component syste
crystallize.
6-5
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the substitutional crystal is significantly higher than that
the corresponding one-component crystal. This isn’t surp
ing as the substitutional crystal packs with less efficien
than the one-component crystal. In contrast to this ther
little difference between the pressures of the binary and o
component fluids. This results in a lower thermodynam
driving force, at volume fractions above melting, for the b
nary system and in turn much longer crystallization tim
Figure 4 shows that the binary system at the volume frac
of f50.55, does not crystallize on the experimental M
time scale due to the lack of thermodynamic drive. Howev
as the volume fraction is increased, the substitutional cry
becomes more and more thermodynamically favored o
the fluid. This results in the crystallization process starting
shorter and shorter times. However at the volume fraction
f50.58, the crystallization process has once again bec
suppressed, even though at this volume fraction there
large thermodynamic drive for the crystallization process.
we shall see in the next section, this is due to the comp
tional differences required for the crystallization process
proceed at such a high volume fraction, which can only a
from large scale diffusional processes, which have beco
greatly suppressed.

V. RING STATISTICS AND STRUCTURAL CHANGES
DURING CRYSTALLIZATION

In the previous section we discussed the thermodyna
considerations behind the observed behavior of the m
stable state in a binary hard-sphere fluid of small polydisp
sity. Here we wish to discuss some of the underlying mic
scopic structural causes of this behavior.

As discussed in Sec. II we use ring statistics to charac
ize the local atomic structure of the system and, in particu
obtain both the number and type of particles with local
and hcp environments as a function of time. The numbe
particlesNx thus labeled as hcp or fcc, as a function of tim
for the binary system, are shown in Fig. 5. By comparing t
data to Fig. 4, one sees that the pressure is indeed a
indicator of the degree of crystallinity. The composition
the crystalXcr as a function of time is shown in Fig. 6. It ca

FIG. 5. The number of hard spheres having an fcc or hcp lo
environment,Ncr relative to the total numberNt as a function of
time for the two-component hard-sphere system.
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be seen that the crystal is slightly richer in large spheres.
not hard to envisage that the placement of the small sph
in the substitutional crystal reduces packing efficien
While the composition of the crystal may not seem ve
different to that of the total system, the difference is certai
of statistical significance. To demonstrate this imagine
have an infinitely large supply of two types of particles, sp
cies 1 and 2. When we select one of these particles at
dom, the probability of its identity being species 1 is giv
by the total composition of the systemXT50.5. Let us ran-
domly selectNx particles from the supply and thus obta
some random compositionNr . We then calculate the prob
ability of this random compositionXr being less than the
composition obtained forXcr in the simulation. The results
from this binomial distribution problem@26# show the prob-
ability to be less than 1% from the time any significa
amount of crystal has formed. This demonstrates that
crystallization process requires systematic compositio
changes in going from the fluid to the equilibrium substit
tional crystal. It should be noted that this is still below th
volume fraction off50.593, above which the equilibrium
state consists of two substitutional crystal phases. The
quired compositional changes demand large-scale diffus
however, it is large-scale diffusion that is suppressed u
approaching the glass transition, as can be seen from
behavior of the diffusion coefficient shown in Table I. Thu
the binary system forms a stable glass while the arres
large-scale diffusion does little to inhibit crystallization
the case of the one-component system. In this case only l
rearrangements are needed to produce a crystalline arra
ment from a dense fluid arrangement.

VI. CONCLUSIONS

The one-component hard-sphere fluid has been foun
be unstable above the melting volume fraction. It is n
stable for times long relative to measured relaxation tim
and it is not meaningful to talk of a metastable fluid for su
a system. It may be that metastable states can be stabi
by using very small systems@3,24#. However, an equimolar
binary hard-sphere system with size ratiog50.905, has been

al FIG. 6. The compositionXcr of hard spheres having a loca
crystalline environment as a function of time for the tw
component hard-sphere system.
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found to have a long-lived, metastable fluid branch abo
melting. Two separate mechanisms resulting in this diff
ence have been established. At volume fractions slig
above melting, the binary system has a reduced thermo
namic drive due to the reduced packing efficiency of
substitutional crystal. At higher volume fractions the therm
dynamic drive rises, which favors crystallization, howev
here the crystallization process is found to necessitate c
n

ta,

02150
e
-
ly
y-
e
-
r

-

positional changes even at volume fractions where the e
librium phase is a single substitutional crystal. These co
positional changes demand large-scale diffusion, which
property that slows down dramatically with increasing vo
ume fraction; once again crystallization becomes inhibi
leading to a long-lived metastable disordered system. Th
we conclude that a stable glassy phase exists for binary
tems, which is not the case for the one-component syste
ys.
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